3.4 Linear equation systems

Definition: A system,

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m} \\
& \text { with the constant parameters } \\
& a_{i j} \text { for } i=1,2, \ldots, m \text { and } j=1,2, \ldots, n \text {, } \\
& b_{i} \text { for } i=1,2, \ldots, m
\end{aligned}
$$

and the variables
x_{j} for $j=1,2, \ldots, n$ is called
Linear equation system with m equations and n variables.

If all b_{i} for $i=1,2, \ldots, m$ are equal to 0 ,then the linear equation system is called homogeneous, otherwise it is called inhomogeneous.

Vector presentation:

$$
\underline{a}_{1} \mathbf{x}_{1}+\underline{a}_{2} \mathbf{x}_{2}+\ldots+\underline{a}_{n} \mathbf{x}_{n}=\underline{b}
$$

$$
\text { with } \underline{a}_{i}=\left(\begin{array}{c}
a_{1 i} \\
a_{2 i} \\
\vdots \\
a_{m i}
\end{array}\right) \text {, für } i=1,2, \ldots, n \quad \text { und } \quad \underline{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right) \text {. }
$$

Matrix presentation:

$$
\underline{A} \underline{x}=\underline{b}
$$

with $\quad \underline{A}=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & & & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right)$

The term of a solution of a linear equation system:
Definition: a vector $x=\hat{x}$ of fixed values, which satisfies the condition $\underline{A} \underline{\hat{x}}=\underline{b}$ (which transfers it in an identity), is called a solution of the linear equation system $\underline{A} \underline{x}=\underline{b}$.

Example:

$$
\begin{aligned}
2 x_{1}+x_{2}-x_{3} & =5 \\
-3 x_{1}+\frac{1}{2} x_{3} & =10 \\
x_{2}-x_{3} & =0
\end{aligned}
$$

We solve the linear equation system by using elementary transformations of a basis:

	$\underline{\mathrm{a}}_{1}$	$\underline{\mathrm{a}_{2}}$	$\underline{\mathrm{a}}_{3}$	$\underline{\mathrm{~b}}$
$\square \underline{\mathrm{e}}_{1}$	2	1	-1	5
$\underline{\mathrm{e}}_{2}$	-3	0	$1 / 2$	10
$\underline{\mathrm{e}}_{3}$	0	1	-1	0

	\underline{a}_{1}	$\underline{\mathrm{e}}_{1}$	$\underline{\mathrm{a}}_{3}$	$\underline{\underline{b}}$
$\underline{\mathrm{a}}_{2}$	2	1	-1	5
$ط \underline{\mathrm{e}}_{2}$	-3	0	112	10
$\underline{\mathrm{e}}_{3}$	-2	-1	0	-5

	\underline{a}_{1}	\underline{e}_{1}	\underline{e}_{2}	\underline{b}
$\underline{\mathrm{a}}_{2}$	-4	1	2	25
$\underline{\mathrm{a}}_{3}$	-6	0	2	20
$\underline{\mathrm{e}}_{3}$	-2	-1	0	-5

	$\underline{\mathrm{e}}_{3}$	$\underline{\mathrm{e}}_{1}$	$\underline{\mathrm{e}}_{2}$	$\underline{\mathrm{~b}}$
$\underline{\mathrm{a}}_{2}$	-2	3	2	35
$\underline{\mathrm{a}}_{3}$	-3	3	2	35
$\underline{\mathrm{a}}_{1}$	$-1 / 2$	$1 / 2$	0	$5 / 2$

$\underline{\mathrm{b}}=\underline{a}_{1} \cdot \frac{\mathbf{5}}{2}+\left.\left.\left.\underline{\mathrm{a}}_{2} \cdot \overrightarrow{35}\right|_{\mathrm{x}_{1}}\right|_{\mathrm{x}_{2}}\right|_{\mathrm{x}_{3}}$
Solution: $\quad \underline{x}=\left(\begin{array}{l}\mathbf{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3}\end{array}\right)=\left(\begin{array}{c}5 / 2 \\ 35 \\ 35\end{array}\right)$
(Proof!)

We had three equations and three variables in the example above. There was exactly one solution, which is not always the case.

Quadratic equation system: $\mathrm{m}=\mathrm{n}$	
Overdetermined equation system: $\mathrm{m}>\mathrm{n}$	
Underdetermined equation system: $\mathrm{m}<\mathrm{n}$	

Two questions:
a) Solvability: Does the linear equation system have a solution?
b) Uniqueness: How many solutions does the linear equation system have?

Theorem: A linear equation system $\underline{A} \underline{x}=\underline{b}$ is solvable, if and only if $\rho(\underline{A})=\rho(\underline{A}, \underline{b})$
$\underline{A}, \underline{b}$ is called extended coefficient matrix.
In the example above it is $\rho(\underline{A})=3=\rho(\underline{A}, \underline{\mathrm{~b}})$.

Theorem: Given the linear equation systems $\underline{A} \underline{x}=\underline{b}$ with n variables $\left(\underline{x} \in R^{n}\right)$.
The linear equation system has exactly one solution if and only if $\rho(\underline{A})=n$

If, in contrast, it holds $\rho(\underline{A})=\rho(\underline{A}, \underline{b})=r<n$, then $f=n-$ r variables are free to choose, viz. we have an infinite number of solutions.
f is the degree of freedom of the linear equation system

Examples:

1) task above: $\rho(\underline{A})=3=n$
2) $3 x_{1}-x_{2}+2 x_{3}+x_{4}=5$

The linear equation system is composed of one equation with four variables.

$$
\begin{aligned}
& \rho(\underline{A})=\rho(\underline{A}, \underline{b})=1, \quad n=4, \quad f=3 ; \\
& x_{4}=5-3 x_{1}+x_{2}-2 x_{3}, \quad x_{1}, x_{2}, x_{3} \in R \text { arbitrary }
\end{aligned}
$$

3) $2 x_{1}+2 x_{2}+2 x_{3}=1$

$$
x_{1}-4 x_{2}+3 x_{3}-2 x_{4}=-1
$$

The linear equation system is composed of two equations with four variables.

Solution of the linear equation system using elementary transformations of a basis:

General solution:
$\binom{x_{1}}{x_{4}}=\binom{1 / 2}{3 / 4}-\left(\begin{array}{rr}1 & 1 \\ 5 / 2 & -1\end{array}\right) \cdot\binom{x_{2}}{x_{3}}, \quad x_{2}, x_{3} \in R \quad$ arbitrary
\mid
Basis variable (BV) Non-basic variable (NBV)

We get special solutions by fixing the arbitrary variables:
a) $x_{2}=1$

$$
x_{1}=-\frac{3}{2}
$$

$x_{3}=1$
$x_{4}=-\frac{3}{4}$
thus $\underline{x}=\left(\begin{array}{c}-3 / 2 \\ 1 \\ 1 \\ -3 / 4\end{array}\right)$
b) $x_{2}=0 \quad x_{1}=-\frac{1}{2} \quad$ thus $\underline{x} \quad\left(\begin{array}{c}-1 / 2 \\ 0 \\ 1 \\ 7 / 4\end{array}\right)$

$$
x_{3}=1 \quad x_{4}=\frac{7}{4}
$$

